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Abstract

Image generation and retrieval are important emerging areas of generative AI
but are also useful for world models to do visual understanding, navigation and
reasoning. Unlike language which has a linear structure, visual data is non-linear
and hierarchical with spatial and semantic connections between its primitives.
A major question between ML and neuroscience is how to efficiently store and
retrieve image primitives to generate and reason over a world of rich hierarchical
visual data. Theories from neuroscience including the hippocampal memory index
theory, top-down analysis, and bottom-up synthesis loops using image grammars
proposed by Mumford provide a framework for AI might efficiently solve this
problem. Here, we propose an image component database with image components
extracted using segment-anything (SAM), along with image grammars to enable
spatial and semantic retrieval. We show that our database has value by training
models on foundational tasks that beat the performance of large vision models like
GPT-4o. Together, we lay the foundation to train vision foundation model that is
able to reason over visual data without having to simplify it into text.

Hippocampal Index Theory

While the parallels between AI systems and systems of neuroscience have been established at the
neuron, circuit, and algorithm level Mumford [2020]. Trends in AI are leaning towards systems
that are more agentic, which also bears roots in theoretical neuroscience Minsky [1986]. To make
systems that are more agentic, we propose a system combining smaller models Hari et al. [2024] that
have access to a large database of visual components extracted from previously viewed scenes. This
database has evidence in the hippocampal index theory Koch and Davis [1994].

The brain solves a variety of retrieval problems, from retrieving data, as in the case of arithmetic
to retrieving whole circuits, as in the case of a reflex action involving multiple muscle groups. In
AI systems too, retrieval is important for problems ranging from Question Answering Lewis et al.
[2021], image search Radford et al. [2021], Girdhar et al. [2023] and generation since the tokens
LLMs generate are retrieving over a fixed dictionary via attention score optimization.

In the hippocampal index theory, objects are represented in the brain as representations that allow for
partial recall and semantic traversal. Building a system using AI requires defining image primitives,
understanding spatial relations between them and encoding semantic associations between them.
Previous literature has built on defining visual primitives and parametrizing the spatial and semantic
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Figure 1: Recall performance of a query with k components over the top n images returned by the
recall system. Our results are shown in blue, those using Imagebind embeddings are shown in orange

relationships between them Zhu and Mumford [2006], Mumford and Desolneux [2018], Koch and
Davis [1994].

Image Component Database

We built a large database of 3 million image components extracted from 30,000 images. 10,000
images were taken from Flickr hlky [2024] and the remaining were frames of videos taken by the
authors. To obtain object primitives from these images, we used SAM Kirillov et al. [2023] and treated
all object masks as invidual objects. We overlaid the mask onto the image to isolate each object and
used GPT-4o to label the object. The image components returned by SAM are paired with centroids
that allow us to build spatial graphs of connectivity between the components or their corresponding
labels. Objects that were unclear and noisy labels were culled using a verification step by passing the
object paired with its label to GPT-4o, along with the prompt "Does this label accurately describe
this image", and only components that were returned in the affirmative were retained. The labels of
verified objects were shortened to one-word labels to enable grouping. Components were given a
unique ID using a random number generator and embedded using Imagebind Girdhar et al. [2023],
to create a database enabling the retrieval of the image component, its label, short label, image
embedding, position and metadata (source image), making the system suitable for vector database
operations.

Recall

We use AND grammars, originally proposed by Song-Chun Zhu and David Mumford Zhu and
Mumford [2006] to retrieve images from the database. A query q can composed of multiple objects
joined with an AND operator of the form q1 AND q2 · · · AND qm, (for example "dog AND ball)".
We represent each image as a bag of components C = {c1, c2, · · · , ck}. A similarity score s is
produced for each image as

s =

|q|∏
i=1

max
k

qi · ck

where · represents the dot product and q is the number of terms in the query. The query terms are
embedded using Imagebind to project them in the same space as the component vectors. Images are
returned to the user in descending order of their similarity scores.
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Figure 2: Comparison of models trained to identify whether a graph is of an image whose components
are shuffled or not. GPT-4o (Blue) is compared against our GNNs trained with nodes as embeddings
of image components (orange) and embeddings of short labels of objects (teal). x axis shows fraction
of nodes shuffled.

To benchmark the recall using our component database, we used Imagebind to retrieve images
by embedding the query q and retrieving the n most similar images sorted by descending cosine
similarity. To measure recall, we used GPT-4o to check whether the recalled image actually contained
the queried terms. In Figure 1, we compare our system (orange) against using Imagebind embeddings
(blue), we measure recall over 100 queries with k components each and measure recall against the top
n image retrieved. For k = 1, the 100 queries used were the 100 most common single word labels
of objects in our dataset; for k = 2, the 100 queries were the 100 most common co-occuring pairs
(triplets for k = 3) of objects.

Shuffling

The database of image components that we develop allows a foundational model to learn spatial and
semantic relations between objects in images. To demonstrate the utility of such a dataset, we define
a foundational model task of identifying whether an image has its objects shuffled. Half the images
in our dataset were shuffled 1. Amongst the images where components were shuffled, a fraction p of
its components were taken and their locations permuted, while keeping the connectivity the same -
i.e. if an image was composed of components c1, c2, · · · cn at locations l1, l2, · · · ln with edge matrix
E, then after shuffling, the mapping would be of the form {(c2, l1), (cn, l2), · · · , (c2, ln)} and still
have edge matrix E.

We benchmarked a Graph Neural Network (GNN) trained with 4 layers of GAT modules and 2 MLP
layers (< 5M params total) in this shuffling task against an off the shelf visual reasoning model (We
used GPT-4o in this work). The vision model we benchedmarked against was shown the image as a
picture of a graph where the nodes were blue circles placed at the centroids of the image components
they represented and a one-word description of the component was overlaid on top of the node. The
model was also passed a prompt that asked it to identify whether the graph that was passed in was
from an image whose components were shuffled or not.

As the fraction of nodes shuffled increased, our trained model was able to identify whether the graph
was shuffled with greater accuracy, as shown in Figure 2. Error bars shown are over 5 random
folds shuffling different sets of nodes. To create the adjacency matrix of the graph used both for the

1images taken from Flickr only were used in this experiment to avoid distributional leak between frames of a
video
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GNN and GPT, we used a kNN graph, drawing the edges between a component and its k nearest
components (results in Figure 2 used k = 5).

References
Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand

Joulin, and Ishan Misra. ImageBind: One Embedding Space To Bind Them All, May 2023. URL
http://arxiv.org/abs/2305.05665. arXiv:2305.05665 [cs].

Surya Narayanan Hari, Rex Liu, and Matt Thomson. Herd: Using multiple, smaller LLMs to match
the performances of proprietary, large LLMs via an intelligent composer, September 2024. URL
http://arxiv.org/abs/2310.19902. arXiv:2310.19902 [cs].

hlky. Flickr. [https://huggingface.co/datasets/bigdata-pw/Flickr](https://
huggingface.co/datasets/bigdata-pw/Flickr), 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Christof Koch and Joel L. Davis, editors. Large-scale neuronal theories of the brain. Computational
neuroscience. MIT Press, Cambridge, Mass, 1994. ISBN 978-0-262-11183-6.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, April 2021. URL
http://arxiv.org/abs/2005.11401. arXiv:2005.11401 [cs].

Marvin Minsky. The society of mind. Simon and Schuster, New York, 1986. ISBN 978-0-671-60740-
1.

David Mumford. The Convergence of AI code and Cortical Functioning – a Commentary, October
2020. URL http://arxiv.org/abs/2010.09101. arXiv:2010.09101 [cs].

David Mumford and Agnès. Desolneux. Pattern theory: the stochastic analysis of real-world
signals. CRC Press Taylor & Francis Group, Boca Raton, second edition edition, 2018. ISBN
978-1-138-05396-0. OCLC: 1039146455.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision, February 2021. URL
http://arxiv.org/abs/2103.00020. arXiv:2103.00020 [cs].

Song-Chun Zhu and David Mumford. A Stochastic Grammar of Images. Foundations and Trends®
in Computer Graphics and Vision, 2(4):259–362, 2006. ISSN 1572-2740, 1572-2759. doi:
10.1561/0600000018. URL http://www.nowpublishers.com/article/Details/CGV-018.

4

http://arxiv.org/abs/2305.05665
http://arxiv.org/abs/2310.19902
[https://huggingface.co/datasets/bigdata-pw/Flickr](https://huggingface.co/datasets/bigdata-pw/Flickr)
[https://huggingface.co/datasets/bigdata-pw/Flickr](https://huggingface.co/datasets/bigdata-pw/Flickr)
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2010.09101
http://arxiv.org/abs/2103.00020
http://www.nowpublishers.com/article/Details/CGV-018

